BIOLOGIA

Conteúdos para alunos do Ensino Medio. Não se esqueça de deixar o seu recado!
"O mundo é um lugar perigoso de se viver, não por causa daqueles que fazem o mal, mas sim por causa daqueles que observam e deixam o mal acontecer". (Albert Einstein)


Blog de notícias saúde, aulas, artigos, informações e muito mais...

Seguidores

terça-feira, 13 de setembro de 2011

NÚCLEO CELULAR

O núcleo celular

O pesquisador escocês Robert Brown (1773- 1858) é considerado o descobridor do núcleo celular. Embora muitos citologistas anteriores a ele já tivessem observados núcleos, não haviam compreendido a enorme importância dessas estruturas para a vida das células. O grande mérito de Brown foi justamente reconhecer o núcleo como componente fundamental das células. O nome que ele escolheu expressa essa convicção: a palavra “núcleo” vem do grego nux, que significa semente. Brown imaginou que o núcleo fosse a semente da célula, por analogia aos frutos.

Hoje, sabemos que o núcleo é o centro de controle das atividades celulares e o “arquivo” das informações hereditárias, que a célula transmite às suas filhas ao se reproduzir.
 
Células eucariontes e procariontes
A membrana celular presente nas células eucariontes, mas ausente nas procariontes. Na célula eucarionte, o material hereditário está separado do citoplasma por uma membrana – a carioteca – enquanto na célula procarionte o material hereditário se encontra mergulhado diretamente no líquido citoplasmático.


Os componentes do núcleo
O núcleo das célula que não estão em processo de divisão apresenta um limite bem definido, devido à presença da carioteca ou membrana nuclear, visível apenas ao microscópio eletrônico.
A maior parte do volume nuclear é ocupada por uma massa filamentosa denominada cromatina. Existem ainda um ou mais corpos densos (nucléolos) e um líquido viscoso (cariolinfa ou nucleoplasma).
 
A carioteca
A carioteca (do grego karyon, núcleo e theke, invólucro, caixa) é um envoltório formado por duas membranas lipoprotéicas cuja organização molecular é semelhante as demais membranas celulares. Entre essas duas membranas existe um estreito espaço, chamado cavidade perinuclear.
A face externa da carioteca, em algumas partes, se comunica com o retículo endoplasmático e, muitas vezes, apresenta ribossomos aderidos à sua superfície. Neste caso, o espaço entre as duas membranas nucleares é uma continuação do espaço interno do retículo endoplasmático.

 

Poros da carioteca
A carioteca é perfurada por milhares de poros, através das quais determinadas substâncias entram e saem do núcleo. Os poros nucleares são mais do que simples aberturas. Em cada poro existe uma complexa estrutura protéica que funciona como uma válvula, abrindo-se para dar passagem a determinadas moléculas e fechando-se em seguida. Dessa forma, a carioteca pode controlar a entrada e a saída de substâncias.
A face interna da carioteca encontra-se a lâmina nuclear, uma rede de proteínas que lhe dá sustentação. A lâmina nuclear participa da fragmentação e da reconstituição da carioteca, fenômenos que ocorrem durante a divisão celular.
A cromatina
A cromatina (do grego chromatos, cor) é um conjunto de fios, cada um deles formado por uma longa molécula de DNA associada a moléculas de histonas, um tipo especial de proteína. Esses fios são os cromossomos.
Quando se observam núcleos corados ao microscópio óptico, nota-se que certas regiões da cromatina se coram mais intensamente do que outras. Os antigos citologistas já haviam observados esse fato e imaginado, acertadamente, que as regiões mais coradas correspondiam a porções dos cromossomos mais enroladas, ou mais condensadas, do que outras.
Para assinalar diferenças entre os tipos de cromatina, foi criado o termo heterocromatina (do grego heteros, diferente), que se refere à cromatina mais densamente enrolada. O restante do material cromossômico, de consistência mais frouxa, foi denominado eucromatina (do grego eu, verdadeiro).
 
Diferentes níveis de condensação do DNA. (1) Cadeia simples de DNA . (2) Filamento de cromatina (DNA com histonas). (3) Cromatina condensada em interfase com centrómeros. (4) Cromatina condensada em profase. (Existem agora duas cópias da molécula de DNA) (5) Cromossoma em metafase

Os nucléolos
Na fase que a célula eucariótica não se encontra em divisão é possível visualizas vários nucléolos, associados a algumas regiões específicas da cromatina. Cada nucléolo é um corpúsculo esférico, não membranoso, de aspecto esponjoso quando visto ao microscópio eletrônico, rico em RNA ribossômico (a sigla RNA provém do inglês RiboNucleic Acid). Este RNA é um ácido nucléico produzido a partir o DNA das regiões específicas da cromatina e se constituirá um dos principais componentes dos ribossomos presentes no citoplasma.
É importante perceber que ao ocorrer a espiralação cromossômica os nucléolos vão desaparecendo lentamente. Isso acontece durante os eventos que caracterizam a divisão celular. O reaparecimento dos nucléolos ocorre com a desespiralação dos cromossomos, no final da divisão do núcleo.

A estrutura dos cromossomos

Cromossomos da célula interfásica
O período de vida da célula em que ela não está em processo de divisão é denominado interfase. A cromatina da célula interfásica, como já foi mencionada, é uma massa de filamentos chamados de cromossomos. Se pudéssemos separar, um por um, os cromossomos de uma célula interfásica humana, obteríamos 46 filamentos, logos e finos. Colocado em linha, os cromossomos humanos formariam um fio de 5 cm de comprimento, invisível ao microscópio óptico, uma vez que sua espessura não ultrapassa 30 nm.

Constituição química e arquitetura dos cromossomos
Descobrir a natureza química dos cromossomos foi uma árdua tarefa que mobilizou centenas de cientistas e muitos anos de trabalho. O primeiro constituinte cromossômico a ser identificado foi o ácido desoxirribonucléico, o DNA.
Em 1924, o pesquisador alemão Robert J. Feugen desenvolveu uma técnica especial de coloração que permitiu demonstrar que o DNA é um dos principais componentes dos cromossomos. Alguns anos mais tarde, descobriu-se que a cromatina também é rica em proteínas denominadas histonas.
 
Cromossomos da célula em divisão
Quando a célula vai se dividir, o núcleo e os cromossomos passam por grandes modificações. Os preparativos para a divisão celular têm inicio com a condensação dos cromossomos, que começam a se enrolar sobre si mesmos, tornando-se progressivamente mais curtos e grossos, até assumirem o aspecto de bastões compactos.
 
Constrições cromossômicas
Durante a condensação cromossômica, as regiões eucromáticas se enrolam mais frouxamente do que as heterocromáticas, que estão condensadas mesmo durante a interfase. No cromossomo condensado, as heterocromatinas, devido a esse alto grau de empacotamento, aparecem como regiões “estranguladas” do bastão cromossômico, chamadas constrições.

Centrômero e cromátides
Na célula que está em processo de divisão, cada cromossomo condensado aparece como um par de bastões unidos em um determinado ponto, o centrômero. Essas duas “metades” cromossômicas, denominadas cromátides-irmãs são idênticas e surgem da duplicação do filamento cromossômico original, que ocorre na interfase, pouco antes de a divisão celular se iniciar.
Durante o processo de divisão celular, as cromátides-irmãs se separam: cada cromátide migra para uma das células-filhas que se formam.
O centrômero fica localizado em uma região heterocromática, portanto em uma constrição que contém o centrômero é chamada constrição primária, e todas as outras que porventura existam são chamadas constrições secundárias.


As partes de um cromossomo separadas pelo centrômero são chamadas braços cromossômicos. A relação de tamanho entre os braços cromossômicos, determinada pela posição do centrômero, permite classificar os cromossomos em quatro tipos:
  • metacêntrico: possuem o centrômero no meio, formando dois braços de mesmo tamanho;
  • submetacêntricos: possuem o centrômero um pouco deslocado da região mediana, formando dois braços de tamanhos desiguais;
  • acrocêntricos: possuem o centrômero bem próximo a uma das extremidades, formando um braço grande e outro muito pequeno;
  • telocêntricos: possuem o centrômero em um das extremidades, tendo apenas um braço.

Cromossomos e genes

O que são genes?
As moléculas de DNA dos cromossomos contêm “receitas” para a fabricação de todas as proteínas da célula. Cada “receita” é um gene.
Portanto, o gene é uma seqüência de nucleotídeos do DNA que pode ser transcrita em uma versão de RNA e conseqüentemente traduzida em uma proteína.

Conceito de genoma
Um cromossomo é comparável a um livro de receita de proteínas, e o núcleo de uma célula humana é comparável a uma biblioteca, constituída por 46 volumes, que contêm o receituário completo de todas as proteínas do indivíduo. O conjunto completo de genes de uma espécie, com as informações para a fabricação dos milhares de tipos de proteínas necessários à vida, é denominado genoma. Atualmente, graças a modernas técnicas de identificação dos genes, os cientistas mapearam o genoma humano através do Projeto Genoma Humano.

Projeto Genoma Humano
O Projeto Genoma Humano (PGH) teve por objetivo o mapeamento do genoma humano, e a identificação de todos os nucleotídeos que o compõem. Consistiu num esforço mundial para se decifrar o genoma. Após a iniciativa do National Institutes of Health (NIH) dos Estados Unidos, centenas de laboratórios de todo o mundo se uniram à tarefa de seqüenciar, um a um, os genes que codificam as proteínas do corpo humano e também aquelas seqüências de DNA que não são genes. Laboratórios de países em desenvolvimento também participaram do empreendimento com o objetivo de formar mão-de-obra qualificada em genômica.
 

Para o seqüenciamento de um gene, é necessário que ele seja antes amplificado numa reação em cadeia da polimerase, e então clonado em bactérias. Após a obtenção de quantidade suficiente de DNA, executa-se uma nova reação em cadeia (PCR), desta vez utilizando didesoxirribonucleotídeos marcados com fluoróforos para a determinação da seqüência.
O projeto foi fundado em 1990, com um financiamento de 3 milhões de dólares do Departamento de Energia dos Estados Unidos e dos Institutos Nacionais de Saúde dos Estados Unidos, e tinha um prazo previsto de 15 anos.
Devido à grande cooperação da comunidade científica internacional, associada aos avanços no campo da bioinformática e das tecnologias de informação, um primeiro esboço do genoma foi anunciado em 26 de Junho de 2000, dois anos antes do previsto.
Em 14 de Abril de 2003, um comunicado de imprensa conjunto anunciou que o projeto foi concluído com sucesso, com o seqüenciamento de 99% do genoma humano, com uma precisão de 99,99%.
Os trabalhos do projeto foram dados como concluídos em 2003. Com a tecnologia da época, estimou-se que todos os genes (em torno de 25.000) haviam sido seqüenciados. Deve-se lembrar que nem todo o DNA humano foi seqüenciado. Estimativas atuais concluem que apenas cerca de 2% do material genético humano é composto de genes, enquanto que a maior parte parece não conter instruções para a formação de proteínas, e existe provavelmente por razões estruturais. Muito pouco dessa maior parte do material genético tem sua seqüência conhecida.
Por limitações tecnológicas, partes do DNA que possuem muitas repetições de bases nitrogenadas também ainda não foram totalmente seqüenciadas. Essas partes incluem, por exemplo, os centrômeros e os telômeros dos cromossomos.
De todos os genes que tiveram sua seqüência determinada, aproximadamente 50% codificam para proteínas de função conhecida.
Apesar dessas lacunas, a conclusão do genoma já está facilitando o desenvolvimento de fármacos muito mais potentes, assim como a compreensão de diversas doenças genéticas humanas.
Fonte: www.sobiologia.com.br

Nenhum comentário:

Postar um comentário

Powered By Blogger

Pesquisar este blog